Ungerade Ordnungen:   n beliebig

Für die Konstruktion von magischen Quadraten ungerader Ordnung (n=3,5,7,…) gibt es eine Vielzahl von Methoden, da diese sehr einfach zu erzeugen sind. Viele dieser Konstruktionsmethoden sind aber statisch, d.h. sie erzeugen nur ein einziges magisches Quadrat.

Verfahren Verfahren
Al-Haytham Lozenge-Quadrate (Sayles)
Bachet de Mézeriac Mamzeris   (2020)
Chan-Mainkar-Narayan-Webster Moschopoulos I
de la Hire (1705) Moschopoulos II
de la Hire (Variante: Narayana) Rallier des Ourmes
de la Hire (Variante: Labosne) Reiner
de la Loubère De Los Reyes-Pourdarvish-Midha-Das
Frierson Sauveur (Diagonalenmethode)
Liao-Zhu-Wu Zhao